Article ID Journal Published Year Pages File Type
4668602 Arab Journal of Mathematical Sciences 2014 16 Pages PDF
Abstract

In this article, Cauchy’s integral formula for nth q-derivative of analytic functions is established and used to introduce a new proof to q-Taylor series by means of using the residue calculus in the complex analysis. Some theorems related to this formula are presented. A q-extension of a Laurent expansion is derived and proved by means of using Cauchy’s integral formula for a function, which is analytic on a ring-shaped region bounded by two concentric circles. Three illustrative examples are presented to be as applications for a q-Laurent expansion.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,