Article ID Journal Published Year Pages File Type
4669083 Bulletin des Sciences Mathématiques 2009 23 Pages PDF
Abstract

Let W(G) and L(G) denote the path and loop groups respectively of a connected real unimodular Lie group G endowed with a left-invariant Riemannian metric. We study the Ricci curvature of certain finite dimensional approximations to these groups based on partitions of the interval [0,1]. We find that the Ricci curvatures of the finite dimensional approximations are bounded below independent of partition iff G is of compact type with an Ad-invariant metric.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)