Article ID Journal Published Year Pages File Type
4669523 Bulletin des Sciences Mathématiques 2007 16 Pages PDF
Abstract

A real polynomial P of degree n in one real variable is hyperbolic if its roots are all real. A real-valued function P is called a hyperbolic polynomial-like function (HPLF) of degree n if it has n real zeros and P(n) vanishes nowhere. Denote by the roots of P(i), k=1,…,n−i, i=0,…,n−1. Then in the absence of any equality of the form one has ∀i

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)