Article ID Journal Published Year Pages File Type
4669753 Comptes Rendus Mathematique 2014 5 Pages PDF
Abstract

In this work, an intrinsic projectively invariant distance is used to establish a new approach to the study of projective geometry in a Finsler space. It is shown that the projectively invariant distance previously defined is a constant multiple of the Finsler distance when the manifold in question is both forward and backward complete. As a consequence, two projectively related complete Einstein Finsler spaces with constant negative scalar curvature are homothetic. Evidently, this will be true for Finsler spaces of constant flag curvature as well.

RésuméDans ce travail, une distance intrinsèque projectivement invariante est utilisée pour établir une nouvelle approche en vue de l'étude de la géométrie projective dans les espaces de Finsler. Il est démontré que la distance projectivement invariante définie précédemment est un multiple constant de la distance finslérienne dans le cas où celle-ci est complète (à la fois en avant et en arrière). Par conséquent, deux espaces d'Einstein–Finsler complets à courbure scalaire constante négative sont homothétiques. Évidemment, ceci sera vrai aussi pour les espaces de Finsler à courbure sectionelle constante.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,