Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4670594 | Comptes Rendus Mathematique | 2010 | 4 Pages |
The automorphic cohomology of a reductive Q-group G captures essential analytic aspects of the arithmetic subgroups of G. The subspace spanned by all possible residues and principal values of derivatives of Eisenstein series, attached to cuspidal automorphic forms π on the Levi factor of proper parabolic Q-subgroups of G, forms the Eisenstein cohomology. We show that non-trivial classes can only arise if the point of evaluation features a “half-integral” property. Consequently, only the analytic behavior of the automorphic L-functions at half-integral arguments matters whether an Eisenstein series attached to a globally generic π gives rise to a residual class or not.
RésuméLa cohomologie automorphe d'un Q-groupe réductif G détecte des propriétés analytiques essentielles des sous-groupes arithmétiques de G. La cohomologie d'Eisenstein est le sous-espace engendré par tous les résidus ainsi que par les valeurs principales des dérivées des séries d'Eisenstein, attachées aux formes automorphes cuspidales π sur les facteurs de Levi des Q-sous-groupes paraboliques propres de G. Nous montrons que les classes non triviales ne peuvent provenir que des évaluations aux points « demi-entiers ». Ainsi, savoir si une série d'Eisenstein attachée à une forme π générique donne lieu à une classe résiduelle ou non, ne dépend que du comportement analytique de fonctions L automorphes en des points demi-entiers.