Article ID Journal Published Year Pages File Type
4670741 Comptes Rendus Mathematique 2011 5 Pages PDF
Abstract

This Note deals with the computation of distributed null controls for a semi-linear 1D heat equation, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, Ann. Inst. Henri Poincaré Analyse non linéaire 17 (5) (2000) 583] via a fixed point reformulation; see also [V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim. Optimization, Theory and Applications 42 (1) (2000) 73]. More precisely, Carleman estimates and Kakutaniʼs theorem together ensure the existence of fixed points for a corresponding linearized control mapping. In practice, the difficulty is to extract from the Picard iterates a convergent (sub)sequence. We introduce and analyze a least squares reformulation of the problem; we show that this strategy leads to an effective and constructive way to compute fixed points.

RésuméCette Note concerne la détermination effective de contrôles à zéro pour une équation de la chaleur semi-linéaire, dans le cas légèrement surlinéaire. Sous des conditions de croissances optimales, lʼexistence de contrôles a été obtenue dans [E. Fernández-Cara, E. Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, Ann. Inst. Henri Poincaré Analyse non linéaire 17 (5) (2000) 583] par un argument de point fixe ; voir aussi [V. Barbu, Exact controllability of the superlinear heat equation, Appl. Math. Optim. Optimization, Theory and Applications 42 (1) (2000) 73]. Précisément, des inégalités de Carleman et le théorème de Kakutani impliquent lʼexistence de points fixes pour un opérateur de contrôle linéarisé associé. En pratique, la difficulté est dʼextraire des itérés de Picard une sous-suite convergente. Cette note propose et analyse une reformulation du problème par une approche de type moindres carrés : on montre que celle-ci garantit une construction explicite de points fixes.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)