Article ID Journal Published Year Pages File Type
4670833 Comptes Rendus Mathematique 2009 4 Pages PDF
Abstract

A homogenization theorem is proved for energies which follow the geometry of an a-periodic Penrose tiling. The result is obtained by proving that the corresponding energy densities are W1-almost periodic and hence also Besicovitch almost periodic, so that existing general homogenization theorems can be applied (Braides, 1986). The method applies to general quasicrystalline geometries. To cite this article: A. Braides et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

RésuméOn démontre un théorème d'homogénéisation pour des énergies qui suivent la géométrie d'un pavage apériodique de Penrose. Nos résultats, applicables à des géométries quasicristallines générales, sont obtenus en démontrant que les densités d'énergie correspondantes sont W1 – et donc Besicovitch – quasi-périodiques, de sort que l'on peut appliquer les théorèmes d'homogénéisation de Braides, 1986. Pour citer cet article : A. Braides et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)