Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4671926 | Comptes Rendus Mathematique | 2010 | 6 Pages |
Taylor–Wiles type lifting theorems allow one to deduce that if ρ is a “sufficiently nice” l-adic representation of the absolute Galois group of a number field whose semi-simplified reduction modulo l, denoted , comes from an automorphic representation then so does ρ. The recent lifting theorems of Barnet-Lamb–Gee–Geraghty–Taylor impose a technical condition, called m-big, upon the residual representation . Snowden–Wiles proved that for a sufficiently irreducible compatible system of Galois representations, the residual images are big at a set of places of Dirichlet density 1. We demonstrate the analogous result in the m-big setting using a mild generalization of their argument.
RésuméLes théorèmes de type Taylor–Wiles indiquent qu'une représentation l-adique du groupe Galois d'un corps de nombre est automorphe si sa réduction modulo l est automorphe et si cette représentation satisfait de bonnes propriétés. Une condition technique mais cruciale qui apparaît dans le travail récent de Barnet-Lamb–Gee–Geraghty–Taylor est que la représentation résiduelle soit m-big. Snowden–Wiles ont demontré que pour un système compatible de représentations suffisamment irréductibles, les images résiduelles sont alors big pour un ensemble de Dirichlet densité 1. Nous démontrons ici un résultat analogue dans le cadre de m-big par une généralisation de la démonstration de Snowden–Wiles.