Article ID Journal Published Year Pages File Type
4672336 Comptes Rendus Mathematique 2009 6 Pages PDF
Abstract

This work is concerned with stabilization of a wave equation stabilized by a boundary feedback. When the feedback is both frictional and with memory, we prove exponential stability of the solutions. In case of a boundary feedback which is only of memory type, uniform stability is not expected. We prove in this latter case, that the solutions decay polynomially. The method is new and uses the method of higher order energies (see [F. Alabau-Boussouira, J. Prüss, R. Zacher, Exponential and polynomial stabilization of wave equations subjected to boundary-memory dissipation with singular kernels, in preparation; F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020; F. Alabau, P. Cannarsa, V. Komornik, Indirect internal damping of coupled systems, J. Evolution Equations 2 (2002) 127–150; F. Alabau, Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim. 41 (2002) 511–541]), the multiplier method and the properties of a large class of singular kernels. Moreover, our method can be extended to include cases of nonsingular kernels (see [V. Vergara, R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z. 259 (2008) 287–309; R. Zacher, Convergence to equilibrium for second order differential equations with weak damping of memory type, preprint.]). To cite this article: F. Alabau-Boussouira et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

RésuméOn étudie le problème de la stabilisation d'une équation des ondes par un feedback frontière avec mémoire. Le noyau du feedback est supposé singulier. Dans le cas où le feedback est à la fois frictionnel et avec mémoire, on démontre que l'énergie des solutions décroît exponentiellement. Dans le cas où le feedback est seulement de type mémoire, on montre dans cette Note que l'énergie des solutions décroît polynômialement. Le résultat repose sur l'utilisation d'énergies d'ordre plus élevé (cf. [F. Alabau-Boussouira, J. Prüss, R. Zacher, Exponential and polynomial stabilization of wave equations subjected to boundary-memory dissipation with singular kernels, in preparation ; F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020 ; F. Alabau, P. Cannarsa, V. Komornik, Indirect internal damping of coupled systems, J. Evolution Equations 2 (2002) 127–150 ; F. Alabau, Indirect boundary stabilization of weakly coupled systems, SIAM J. Control Optim. 41 (2002) 511–541]) la méthode des multiplicateurs et les propriétés d'une large classe de noyaux singuliers (cf. [V. Vergara, R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Math. Z. 259 (2008) 287–309 ; R. Zacher, Convergence to equilibrium for second order differential equations with weak damping of memory type, preprint.]). De plus, notre méthode peut être étendue pour traiter des cas de noyaux non singuliers. Pour citer cet article : F. Alabau-Boussouira et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)