Article ID Journal Published Year Pages File Type
4672405 Comptes Rendus Mathematique 2008 4 Pages PDF
Abstract

Let ϕt:T1M→T1M be the magnetic flow of the pair (g,Ω). We show that if ϕt preserves a C2,1 codimension one foliation then (M,g) has constant, nonpositive Gaussian curvature and Ω is a constant multiple of the area form of (M,g). So if the genus of M is greater than one, the flow is either Anosov or conjugate to a horocycle flow. If M is a torus, the flow is actually geodesic and flat. To cite this article: J.B. Gomes, R.O. Ruggiero, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

RésuméSoit ϕt:T1M→T1M le flot magnétique du pair (g,Ω). Nous demonstrons que si ϕt preserve un feuilletage C2,1 de codimension 1, alors la courbure de (M,g) est une constante non positive et la forme Ω est le produit d'une constante par la forme d'aire de (M,g). Pour citer cet article : J.B. Gomes, R.O. Ruggiero, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)