Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4672780 | Indagationes Mathematicae | 2015 | 13 Pages |
Abstract
Generalizing two functional equations introduced in Houston and Sahoo (2008), Jung and Bae (2003), which arise from number theory we prove the stability of the equations f(x1x2+y1y2,x1y2−x2y1)=g(x1,y1)h(x2,y2) for all x1,y1,x2,y2∈Rx1,y1,x2,y2∈R, where f,g,h:R2→Rf,g,h:R2→R, and g(x1,y1,u1,v1)h(x2,y2,u2,v2)=f(x1x2+y1y2+u1u2+v1v2,x1y2−y1x2+u1v2−v1u2,x1u2−y1v2−u1x2+v1y2,x1v2+y1u2−u1y2−v1x2) for all x1,x2,y1,y2,u1,u2,v1,v2∈Rx1,x2,y1,y2,u1,u2,v1,v2∈R, where f,g,h:R4→Rf,g,h:R4→R.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Jaeyoung Chung, Jeongwook Chang, Chang-Kwon Choi,