Article ID Journal Published Year Pages File Type
4672780 Indagationes Mathematicae 2015 13 Pages PDF
Abstract

Generalizing two functional equations introduced in Houston and Sahoo (2008), Jung and Bae (2003), which arise from number theory we prove the stability of the equations f(x1x2+y1y2,x1y2−x2y1)=g(x1,y1)h(x2,y2) for all x1,y1,x2,y2∈Rx1,y1,x2,y2∈R, where f,g,h:R2→Rf,g,h:R2→R, and g(x1,y1,u1,v1)h(x2,y2,u2,v2)=f(x1x2+y1y2+u1u2+v1v2,x1y2−y1x2+u1v2−v1u2,x1u2−y1v2−u1x2+v1y2,x1v2+y1u2−u1y2−v1x2) for all x1,x2,y1,y2,u1,u2,v1,v2∈Rx1,x2,y1,y2,u1,u2,v1,v2∈R, where f,g,h:R4→Rf,g,h:R4→R.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,