Article ID Journal Published Year Pages File Type
4673211 Indagationes Mathematicae 2008 16 Pages PDF
Abstract

Motivated by a conjecture of Steinhaus, we consider the mapping F, associating to each point x of a convex hypersurface the set of all points at maximal intrinsic distance from x. We first provide two large classes of hypersurfaces with the mapping F single-valued and involutive. Afterwards we show that a convex body is smooth and has constant width if its double has the above properties of F, and we prove a partial converse to this result. Additional conditions are given, to characterize the (doubly covered) balls.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)