Article ID Journal Published Year Pages File Type
4673335 Indagationes Mathematicae 2008 16 Pages PDF
Abstract

In 2003, N. De Grande-De Kimpe, J. Kąkol and C. Perez-Garcia using t-frames and some machinery concerning tensor products proved that compactoid sets in non-archimedean (LM)-spaces (i.e. the inductive limits of a sequence of non-archimedean metrizable locally convex spaces) are metrizable. In this paper we show a similar result for a large class of non-archimedean locally convex space with a £-base, i.e. a decreasing base (Uα)α∈NN of neighbourhoods of zero. This extends the first mentioned result since every non-archimedean (LM)-space has a £-base. We also prove that compactoid sets in non-archimedean (DF)-spaces are metrizable.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)