Article ID Journal Published Year Pages File Type
4673354 Indagationes Mathematicae 2006 13 Pages PDF
Abstract

Let Y be a smooth, projective complex curve of genus g ⩾ 1. Let d be an integer ⩾ 3, let e = {e1, e2,..., er} be a partition of d and let |e| = Σi=1r(ei − 1). In this paper we study the Hurwitz spaces which parametrize coverings of degree d of Y branched in n points of which n − 1 are points of simple ramification and one is a special point whose local monodromy has cyclic type e and furthermore the coverings have full monodromy group Sd. We prove the irreducibility of these Hurwitz spaces when n − 1 + |e| ⩾ 2d, thus generalizing a result of Graber, Harris and Starr [A note on Hurwitz schemes of covers of a positive genus curve, Preprint, math. AG/0205056].

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)