Article ID Journal Published Year Pages File Type
4673440 Annales de l'Institut Henri Poincare (B) Probability and Statistics 2006 11 Pages PDF
Abstract

It is shown that for any family of probability measures in Ornstein type constructions, the corresponding transformation has almost surely a singular spectrum. This is a new generalization of Bourgain's theorem [J. Bourgain, On the spectral type of Ornstein class one transformations, Israel J. Math. 84 (1993) 53–63], same result is proved for Rudolph's construction [D. Rudolph, An example of a measure-preserving map with minimal self-joining and applications, J. Anal. Math. 35 (1979) 97–122].

RésuméOn montre que pour toute famille de mesures de probabilités dans la construction d'Ornstein, les transformations résultantes ont un spectre presque sûrement singulier. On obtient ainsi une nouvelle généralisation d'un théoréme dû à Bourgain [J. Bourgain, On the spectral type of Ornstein class one transformations, Israel J. Math. 84 (1993) 53–63]. Un résultat similaire est obtenu pour les transformations de Rudolph [D. Rudolph, An example of a measure-preserving map with minimal self-joining and applications, J. Anal. Math. 35 (1979) 97–122].

Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability