Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4674139 | Dynamics of Atmospheres and Oceans | 2010 | 17 Pages |
Abstract
This article describes a remarkable effect of the horizontal component of the Coriolis vector, which is traditionally neglected in geophysical fluid wave theory, for the generation of inertio-gravity waves caused by flow over topography. Earlier an initial-value approach was used to calculate the evolutions of internal waves generated by atmospheric forcing in the linear Boussinesq model as done by many investigators for the study of near-inertial waves in the ocean. In this study, however, we focused on the mechanism of generating near-inertial waves by a bottom forcing with various periods. It is shown that the non-traditional Coriolis effects can significantly enhance the generation of near-inertial waves. Moreover, the intensity of generated near-inertial waves increases as the period of bottom forcing approaches to the local inertial period, suggesting the importance of tidal flows for generating near-inertial waves in deep ocean near critical latitudes. It is inferred that such near-inertial waves may contribute to a mechanism of deep-ocean mixing.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Atmospheric Science
Authors
Akira Kasahara,