Article ID Journal Published Year Pages File Type
4674181 Dynamics of Atmospheres and Oceans 2010 15 Pages PDF
Abstract
The study is motivated by recent findings of the decrease in the momentum transfer from strong winds to sea. The Kelvin-Helmholtz instability (KHI) of a three-fluid system of air, foam and water is examined within the range of intermediately short surface waves. The foam-layer thickness necessary for effective separation of the atmosphere and the ocean is estimated. Due to high density contrasts in the three-fluid system, even a relatively thin foam layer between the atmosphere and the ocean can provide a significant stabilization of the water surface by the wavelength shift of the instability towards smaller scales. It is conjectured that such stabilization qualitatively explains the observed reduction of roughness and drag.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,