Article ID Journal Published Year Pages File Type
4677069 Earth and Planetary Science Letters 2013 7 Pages PDF
Abstract

•Dissociation reaction of albitic feldspar in shocked chondrites.•Albitic feldspar dissociates into jadeite and residual amorphous material.•The formation of silica phase as a residual phase is kinetically inhibited.

Albitic feldspar in shocked ordinary chondrites (Yamato 791384 L6 and Yamato 75100 H6) and albite recovered from static high-pressure and high-temperature synthetic experiments (Kubo et al., 2010) were investigated with a transmission electron microscope (TEM) subsequent to a conventional micro-Raman spectroscopy analysis to clarify albite dissociation reaction under high-pressure and high-temperature condition. When jadeite forms from albite, SiO2 phase as a residual phase of albite dissociation reaction should accompany jadeite from the stoichiometry. However, albitic feldspar in and adjacent to shock-melt veins of the shocked chondrites dissociates into jadeite+residual amorphous (or poorly-crystallized) material having varied chemical compositions between jadeite and SiO2 phase. TEM observations of albitic feldspar in the shocked chondrites and albite recovered from the static high-pressure and high-temperature synthetic experiments show that jadeite crystallization is initiated by grain refinement of albite (or albitic feldspar). Nucleation occurs along grain-boundaries or at triple-junctions of the fine-grained albite crystal assemblage. Jadeite crystal starts to grow from the nucleus through grain-boundary diffusion. Considering pressure condition recorded in the shock-melt veins of the shocked chondrites, stishovite is the most likely as a residual SiO2 phase accompanying jadeite. High-pressure and high-temperature condition induced by a dynamic event is very short. Stishovite would be hardy formed through a dynamic event due to sluggish nucleation rate of stishovite compared with that of jadeite, thus leading to induce heterogeneous and incomplete albite dissociation reaction; albite dissociates into jadeite+residual amorphous material.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , , , , ,