Article ID Journal Published Year Pages File Type
4678160 Earth and Planetary Science Letters 2010 10 Pages PDF
Abstract

Alkenones have been found in an increasing number of lakes around the world, making them a promising new tool for continental paleoclimate reconstruction. However, individual lakes may harbor different species of haptophyte algae with different sensitivities to temperature variations, thus presenting a significant challenge to the use of lacustrine alkenones for paleotemperature reconstructions. To explore the extent of lacustrine haptophyte diversity, we conducted the first comprehensive phylogenetic and geochemical survey of lacustrine alkenone producers. We sampled 15 alkenone-containing lake surface sediments from a variety of geographic locales and inferred identities of environmental sequences using 18S ribosomal RNA (rRNA) gene-based phylogenies. For two lakes, BrayaSø in southwest Greenland and Tso Ur on the Tibetan Plateau, we also analyzed both surface and downcore sediments to characterize haptophyte populations through time. In parallel with phylogenetic analyses, we determined the alkenone distributions (including C37/C38 ratios, and the presence/absence of C38 methyl ketones and C40 compounds) in all the samples. The resulting alkenone profiles from this study do not all align with traditional “marine” versus “coastal/lacustrine” alkenone profiles. Additionally, our genetic data indicate the presence of multiple haptophyte species from a single lake sediment sample; these distinct haptophyte populations could not be discerned from the alkenone profiles alone. These results show that alkenone profiles are not a reliable way to assess the haptophyte algae in lakes and that DNA fingerprinting is a preferred approach for species identification. Although closely related haptophyte species or subspecies may not warrant different temperature calibrations, our results emphasize the importance of genetic data for inferring haptophyte identities and eventually selecting alkenone–temperature calibrations for paleoclimate reconstructions.

Research Highlights► Comprehensive survey of alkenone-containing lake surface sediments. ► Comparison of both DNA and alkenone profiles to gauge haptophyte species assemblages. ► Direct implications for the use of U37K proxy in continental regions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , ,