Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4678398 | Earth and Planetary Science Letters | 2010 | 9 Pages |
Abstract
High-temperature compression experiments with in situ X-ray diffraction of ferropericlase (Fp) with a composition of (Mg0.81Fe0.19)O were made in a laser-heated diamond anvil cell to pressures (P) of 116Â GPa at a constant temperature (T) of 1600-1900Â K. Room-temperature experiments with a laser annealing technique were also carried out on the same material. Anomalous unit-cell volume reductions that can be explained by the spin transition of ferrous iron were observed at PÂ =Â 63-96Â GPa and 45-63Â GPa at TÂ =Â 1600-1900Â K and 300Â K, respectively, indicating that the spin transition pressure interval expands with increasing temperature. The observed density changes across this spin transition at TÂ =Â 1600-1900Â K and 300Â K are about 1.6% and 1.0%, respectively, indicating that the spin transition pressure interval expands with increasing temperature. The thermal expansivity of Fp is large in the mid-lower mantle due to the effect of the spin transition. In a peridotitic composition, the spin transition in Fp increases the rock density by 0.35% at the lowermost mantle conditions. Calculated densities show that both perovskitic and peridotitic mantle models may explain the PREM lower mantle density. However, the peridotitic lower mantle model requires less assumption to satisfy the PREM density and is more self-consistent.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth and Planetary Sciences (General)
Authors
Tetsuya Komabayashi, Kei Hirose, Yukio Nagaya, Emiko Sugimura, Yasuo Ohishi,