Article ID Journal Published Year Pages File Type
4679508 Earth and Planetary Science Letters 2008 7 Pages PDF
Abstract

We have investigated the phase relations of iron and iron–nickel alloys with 18 to 50 wt.% Ni up to over 300 GPa using a laser-heated diamond-anvil cell. The synchrotron X-ray diffraction measurements show the wide stability of hcp-iron up to 301 GPa and 2000 K and 319 GPa and 300 K without phase transition to dhcp, orthorhombic, or bcc phases. On the other hand, the incorporation of nickel has a remarkable effect on expanding the stability field of fcc phase. The geometry of the temperature–composition phase diagram of iron–nickel alloys suggests that the hcp–fcc–liquid triple point is located at 10 to 20 wt.% Ni at the pressure of the inner core boundary. The fcc phase could crystallize depending on the nickel and silicon contents in the Earth's core, both of which are fcc stabilizer.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , ,