Article ID Journal Published Year Pages File Type
4679537 Earth and Planetary Science Letters 2009 10 Pages PDF
Abstract

This paper proposes a model of serpentinization of the Southern martian crust that may explain the topographic dichotomy, the absence of an associated free-air gravity anomaly and the presence of strong magnetic anomalies in the Southern Hemisphere. The thermodynamical conditions for serpentinization were likely met in the lithosphere during the Noachian period. This process may have decreased the density in the Southern crust and created the topographic dichotomy. Different reactions of serpentinization that can form magnetite have been considered. Assuming an intense magnetic field (core dynamo), we obtain chemical remanent magnetizations that are in the order of the estimates deduced from martian magnetic anomaly studies. The pertinence and the implications of our model concerning the early thermal evolution of Mars are discussed, with emphasis on the intensity of the paleo-magnetic field.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , , ,