Article ID Journal Published Year Pages File Type
4680582 Earth and Planetary Science Letters 2007 19 Pages PDF
Abstract

Physiological research aimed at understanding current global change provides a basis for evaluating selective survivorship associated with Permo-Triassic mass extinction. Comparative physiology links paleontological and paleoenvironmental observations, supporting the hypothesis that an end-Permian trigger, most likely Siberian Trap volcanism, touched off a set of physically-linked perturbations that acted synergistically to disrupt the metabolisms of latest Permian organisms. Global warming, anoxia, and toxic sulfide probably all contributed to end-Permian mass mortality, but hypercapnia (physiological effects of elevated PCO2) best accounts for the selective survival of marine invertebrates. Paleophysiological perspectives further suggest that persistent or recurring hypercapnia/global warmth also played a principal role in delayed Triassic recovery. More generally, physiology provides an important way of paleobiological knowing in the age of Earth system science.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , ,