Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4680599 | Earth and Planetary Science Letters | 2007 | 13 Pages |
Chromium isotopic compositions and elemental abundances in impact melt rock and impact glass samples from four terrestrial impact craters were measured to verify the presence of an extraterrestrial component and to identify the meteorite type of the impactor. All meteorite classes have Cr isotopic signatures that are different from those of terrestrial rocks; thus, precise measurements of Cr isotopic abundances can unequivocally distinguish terrestrial from extraterrestrial materials. For all four studied craters — Bosumtwi (Ghana), Clearwater East (Canada), Lappajärvi (Finland), and Rochechouart (France) we found positive 53Cr excesses that eliminate carbonaceous chondrite projectiles (because those would show apparent negative excesses) and enstatite chondrites (because of the magnitude of the excess). In all four cases, ordinary chondrites have been identified as the best fit for the data; in the case of Lappajärvi interelement correlations together with the Cr isotope data make an H-chondrite the most likely projectile, whereas in the case of Clearwater East both L or H chondrites are possible. For Bosumtwi and Rochechouart the high indigenous contents of the siderophile elements, and disturbances of the elemental abundances by weathering and hydrothermal alteration, respectively, do not allow further constraints to be placed on the type of ordinary chondrite involved in the impact.