Article ID Journal Published Year Pages File Type
4681695 Geoscience Frontiers 2014 17 Pages PDF
Abstract

•Assessment of spaceborne DEM accuracy in tropical mountainous terrain.•Despite coarser resolution, SRTM has relatively higher vertical accuracy compared to ASTER.•Topographic complexity and vegetation influence DEM accuracy.•GMTED unsuitable for elevation analysis of tropical mountain landscapes.

The paper evaluates sensitivity of various spaceborne digital elevation models (DEMs), viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mapping Mission (SRTM) and Global Multi-resolution Terrain Elevation Data 2010 (GMTED), in comparison with the DEM (TOPO) derived from contour data of 20 m interval of Survey of India topographic sheets of 1: 50,000 scale. Several topographic attributes, such as elevation (above mean sea level), relative relief, slope, aspect, curvature, slope-length and -steepness (LS) factor, terrain ruggedness index (TRI), topographic wetness index (TWI), hypsometric integral (Ihyp) and drainage network attributes (stream number and stream length) of two tropical mountain river basins, viz., Muthirapuzha River Basin and Pambar River Basin are compared to evaluate the variations. Though the basins are comparable in extent, they differ in respect of terrain characteristics and climate. The results suggest that ASTER and SRTM provide equally reliable representation of topography portrayed by TOPO and the topographic attributes extracted from the spaceborne DEMs are in agreement with those derived from TOPO. Despite the coarser resolution, SRTM shows relatively higher vertical accuracy (RMSE = 23 and 20 m respectively in MRB and PRB) compared to ASTER (RMSE = 33 and 24 m) and GMTED (RMSE = 59 and 48 m). Vertical accuracy of all the spaceborne DEMs is influenced by relief of the terrain as well as type of vegetation. Further, GMTED shows significant deviation for most of the attributes, indicating its inability for mountain-river-basin-scale studies.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , ,