Article ID Journal Published Year Pages File Type
4684019 Geomorphology 2016 9 Pages PDF
Abstract

•A previously undescribed erosion feature is identified and characterised.•The Outer Erosion Feature is of post-settlement origin, containing badlands.•The Flood Drainage Channel component is a natural feature.•Managing stock will slow badland erosion and sediment input to the river.

Gully erosion in the seasonally wet tropics of Australia is a major source of sediment in rivers. Stabilization of gullies to reduce impacts on aquatic ecosystems and water storages is a focus for management. However, the cause of the gully erosion is poorly understood and so a critical context for soil conservation is missing. It is uncertain if they are the result of post-European cattle grazing or are they much older and related to non-human factors. The causes of riparian gully erosion along a reach of the Victoria River in the semi-arid tropics of Australia were investigated using several methods. Gully complexes were described and characterised by two major components: a Flood Drainage Channel (FDC) and upslope of this an Outer Erosion Feature (OEF) characterised by badlands set within an amphitheatre. The OEF is likely to be a major source of sediment that appears to be of recent origin. A review of historical records, combined with Optically Stimulated Luminescence (OSL) dating, showed that the FDCs were well established prior to the introduction of domestic stock. It also showed that the badlands began to develop about 90 years ago; that is, about 40 years after the arrival of domestic stock. In addition, an analysis of aerial photos coupled with an on-ground survey and analysis of fallout radionuclides revealed that erosion processes are still active within the gully complexes. While the FDCs are natural drainage channels, cattle grazing probably triggered the badland formation, with the expansion aided by increased rainfall in the past 40 years. Therefore, the OEFs are of human origin and protection from grazing of the riparian zone should slow badland erosion and reduce sediment input to the river.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,