Article ID Journal Published Year Pages File Type
4684662 Geomorphology 2014 17 Pages PDF
Abstract
Fluvial systems of the southern Laurentian Great Lakes region are carved into a complex glacial landscape shaped by continental ice and meltwater of the late Pleistocene. These glacially conditioned river catchments are typically small with drainage areas < 104 km2. A 10-m digital elevation model (DEM) is used to map the spatial distribution of stream gradient for 22 major river catchments of peninsular southern Ontario, which drain to base levels in the lower Great Lakes (Huron, St. Clair, Erie, and Ontario). Raw data from the DEM show stream gradients that exhibit multiscale variance from real and from artifact sources. Based on a vertical slice and multiple-pass moving-window averaging approach, slope data are generalised to the river reach scale (1-2 km) as a representative spatial scale for fluvial processes operating over Holocene timescales. Models of specific stream power are then compared with glacial landform and surface geology mapping. Inherited glacial signatures in river slope appear as deviations in a stream length-gradient index (SL/K index), where river reaches are frequently oversteepened or understeepened. Based on a slope-area analysis, and complementary to theories of channel pattern discrimination, constant stream power curves (with power-law exponent of − 0.4) provide a first-order approach to stratify river reaches in terms of glacial conditioning and expected planform morphologies. However, multiple-channel planform types are rare and localised in southern Ontario, indicating that oversteepened reaches with high stream powers may often be moderated by (1) sediment calibre, with cobble-beds from inherited glacial sediments; and/or (2) relative bank strength, with limited channel widening particularly in gravel and sand-bed channels. Further discrimination of glacially conditioned fluvial process domains will ultimately require consideration of alluvial floodplain characteristics in addition to general observations of river morphology and channel pattern.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,