Article ID Journal Published Year Pages File Type
4686407 Geomorphology 2009 16 Pages PDF
Abstract

Fluvial systems can be preserved in inverted relief on both Earth and Mars. Few studies have evaluated the applicability of various paleohydrological models to inverted fluvial systems. The first phase of this investigation focused on an extensive (spanning ∼ 12 km) inverted paleochannel system that consists of four sandstone-capped, carbonate-cemented, sinuous ridges within the Early Cretaceous Cedar Mountain Formation located southwest of Green River, Utah. Morphologic and sedimentologic observations of the exhumed paleochannels were used to evaluate multiple numerical models for reconstructing paleofluvial hydrological parameters. Another objective of the study was to determine whether aerial or orbital observations yield model results that are consistent with those constrained by field data. The models yield an envelope of plausible dominant discharge values (100–500 m3/s), reflecting the limitations of the approach, and no single model can be used to reliably estimate paleodischarge. On Mars, landforms with attributes consistent with inverted channels have been identified. In spite of differences in the formation history between these martian landforms and the terrestrial analog described here, including potential differences in cement composition and the erosional agent that was responsible for relief inversion, these numerical models can be applied (with modification) to the martian landforms and yield an envelope of plausible values for dominant discharge.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,