Article ID Journal Published Year Pages File Type
4688045 Journal of Geodynamics 2014 52 Pages PDF
Abstract
In the foreland regions of the Western Arunachal Himalaya (WAH), geological studies along the Kameng river (between Tipi village and the Himalayan Frontal Thrust (HFT)) reveal four levels of unpaired terraces and a paired terrace. In WAH, wrench deformation of HFT zone resulted in a SE propagation of the Balipara anticline and it is suggested that the Mikir high basement controls its orientation. Ages of terrace surfaces from Siwaliks suggest that since the Late Pleistocene, Kameng River migrated at a rate varying between ∼7.5 cm/yr in upper reaches and ∼13.5 cm/yr towards northeast due to HFT related uplift. In the Brahmaputra plains, luminescence ages of abandoned paleochannel deposits suggest eastward shifting of the Kameng river at an average rate of ∼1 m/yr. Field evidences between Bhalukpong and Tipi villages show Pliocene strath and Quaternary terrace surfaces, displaced by faults that do not correspond to the mapped faults in the foreland region. We interpret them as out-of-sequence thrusts (OOSTs). This is the first such report of OOST in the NE Himalaya. Presence of active OOST is inferred by similar age (∼1 ka) and differing incision rates of the surface of same terrace (T2b) in adjacent locations. This suggests that OOSTs in the western Arunachal Siwalik are <1 ka. Average slip rate and horizontal shortening rate on OOST during the Holocene, are calculated as ∼12 mm/yr and 7 mm/yr respectively. Thus any estimation of Holocene shortening in the Siwalik therefore, needs to incorporate slip along the OOSTs given that it accommodates a significant amount of N-S compression of the Himalayan fold-and-thrust belt. The reason for OOST in the WAH Siwalik foreland is discussed in terms of the critical wedge dynamics arising from erosion via tectonics-climate interaction. We estimate a minimum slip rate of Siwalik as ∼27 mm/yr during the Holocene and suggest acceleration in shortening rates east of Bhutan.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , ,