Article ID Journal Published Year Pages File Type
4690757 Sedimentary Geology 2007 19 Pages PDF
Abstract

Changes in sea-level and associated climatic fluctuations resulted in extreme and cyclic changes in depositional environments in the Gulf of Carpentaria region (N. Australia). Disconnection from the sea led to the establishment of a “Lake Carpentaria”, perched above sea-level. In this environment, evaporitic conditions at about 70 ka produced a repetitive alternation of μm to mm-thick evaporitic and micritic laminae with a varve-like appearance. These precipitates are interpreted as primary features, deposited in a shallow lake that retained limited water in its centre (core MD-32). Elemental and isotope geochemistry of gypsum and micrite laminae show a complex evaporitic environment where initially marine waters evaporated with the input of continental waters compensating for evaporative losses. Reduced continental input could not support a lake of the initial dimensions and the lake contracted to the deepest part of the basin along the north-eastern side of the basin. In a lake with smaller water volume, continental solutes became apparent. While Sr contents and sulfur isotopes indicate marine contributions, strontium isotopes and oxygen isotopes in sulfates reveal continental inputs and other processes such as recycling of previously precipitated evaporites, sulfate reduction and potential reservoir effects. Carbonate-δ13C and δ18O values in micritic levels also reveal a continental influence and perhaps variations in organic matter signatures associated with climatic variations and vegetation changes. The REE-normalized patterns in gypsum samples are like those found in northern Cape York rivers, restricting the potential continental inputs into the evaporatic basin to a limited geographical area. The small depletion in LREE-normalized patterns between gypsum and river samples is interpreted as a marine influence while depletions in HREE are considered to be the result of fractionation of HREE during gypsum crystallization.The thickness of the calcite-gypsum couplets is consistent with those precipitated annually in modern evaporitic environments. This and the marked fluctuation between dry (gypsum laminae) and wet (micritic layer) environments, suggests a reduced monsoon-like rainfall pattern operating in northern Australia during evaporite precipitation.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , ,