Article ID Journal Published Year Pages File Type
4691968 Tectonophysics 2014 13 Pages PDF
Abstract

•Thermo-rheological model is constructed along a seismic profile in eastern Tibet.•One high-temperature anomaly exists within the uppermost mantle of eastern Tibet.•There are significant lateral variations in rheological strength along the profile.•Lithospheric delamination is responsible for the growth of eastern Tibetan margin.

The eastern Tibetan margin bordered by the Longmen Shan range exhibits significant lateral differences in the lithospheric structure and thermal state. To investigate the roles of these differences in mountain building, we construct a thermo-rheological model along a wide-angle seismic profile across the eastern Tibetan margin based on recent seismic and thermal observations. The thermal modeling is constrained by the surface heat flow data and crustal P wave velocity model. The construction of the rheological envelopes is based on rock mechanics results, and involves two types of rheology: a weak case where the lower crust is felsic granulite and the lithospheric mantle is wet peridotite, and a strong case where the lower crust is mafic granulite and the lithospheric mantle is dry peridotite. The results demonstrate: (1) one high-temperature anomaly exists within the uppermost mantle beneath eastern Tibet, indicating that the crust in eastern Tibet is remarkably warmer than that in the Sichuan basin, and (2) the rheological strength of the lithospheric mantle beneath eastern Tibet is considerably weaker than that beneath the Sichuan basin. The rheological profiles are in accord with seismicity distribution. By combining these results with the observed crustal/lithospheric architecture, Pn velocity distribution and magmatism in the eastern Tibetan margin, we suggest that the delamination of a thickened lithospheric mantle root beneath eastern Tibet is responsible for the growth of the eastern Tibetan margin.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , ,