Article ID Journal Published Year Pages File Type
4692531 Tectonophysics 2013 11 Pages PDF
Abstract

We determined a 3-D P-wave anisotropic tomography of the crust and uppermost mantle beneath North China Craton (NCC) using 107,976 P-wave arrival times from 16,073 local earthquakes recorded by 380 seismic stations. Our results show significant lateral heterogeneities beneath NCC. The lower crust and uppermost mantle beneath the North China Basin show widespread low-velocity anomalies which may reflect high-temperature materials caused by the late Mesozoic basaltic magmatism in the NCC. Low-velocity anomalies also exist beneath the Trans-North China Orogen, which may reflect asthenospheric upwelling since late Mesozoic. Large crustal earthquakes generally occurred in high-velocity zones in the upper to middle crust, while low-velocity and high-conductivity anomalies that may represent fluid-filled, fractured rock matrices exist in the lower crust to the uppermost mantle under the source zones of the large earthquakes. The crustal fluids may lead to the weakening of the seismogenic layer in the upper and middle crust and hence cause the large crustal earthquakes. The NW–SE P-wave fast velocity directions seem to be dominant in the uppermost mantle under the central parts of eastern NCC, suggesting that these mantle minerals were possibly regenerated but keep the original fossil anisotropy formed before the new lithospheric mantle was produced during the Mesozoic to Cenozoic.

► P-wave anisotropic tomography of North China Craton is determined. ► Large crustal earthquakes occurred in high-V zones in the upper to middle crust. ► Part of uppermost lithospheric mantle in eastern NCC may be regenerated. ► Some upper-mantle minerals in eastern NCC may keep their fossil anisotropy.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,