Article ID Journal Published Year Pages File Type
4693893 Tectonophysics 2009 9 Pages PDF
Abstract

We characterize the nature of the source of the high-amplitude, long-wavelength, Mackenzie River magnetic anomaly (MRA), Yukon and Northwest Territories, Canada, based on magnetic field data collected at three different altitudes: 300 m, 3.5 km and 400 km. The MRA is the largest amplitude (13 nT) satellite magnetic anomaly over Canada. Within the extent of the MRA, source depth estimates (8–12 km) from Euler deconvolution of low-altitude aeromagnetic data show coincidence with basement depths interpreted from reflection seismic data. Inversion of high-altitude (3.5 km) aeromagnetic data produces an average magnetization of 2.5 A/m within a 15- to 35-km deep layer, a value typical of magmatic arc complexes. Early Proterozoic magmatic arc rocks have been sampled to the southeast of the MRA, within the Fort Simpson magnetic anomaly. The MRA is one of several broad-scale magnetic highs that occur along the inboard margin of the Cordillera in Canada and Alaska, which are coincident with geometric changes in the thrust front transition from the mobile belt to stable cratonic North America. The inferred early Proterozoic magmatic arc complex along the western edge of the North American craton likely influenced later tectonic evolution, by acting as a buttress along the inboard margin of the Cordilleran fold-and-thrust belt.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,