Article ID Journal Published Year Pages File Type
4694070 Tectonophysics 2009 14 Pages PDF
Abstract

Integrated Ocean Drilling Program (IODP) Expeditions 304/305 recovered a total of 1.4 km sequence of lower crustal gabbroic and minor ultramafic rocks from the Atlantis Massif oceanic core complex on the western flank of the Mid Atlantic Ridge (MAR) at 30°N. We conducted an integrated paleomagnetic and rock magnetic study on this sequence to help address the interplay between magmatism and detachment faulting. Detailed thermal and alternating-field demagnetization results demonstrate that stable components of magnetization of mainly reversed polarity with unblocking temperatures below the Curie temperature of magnetite are retained in gabbroic rocks at IODP Site U1309. Several samples also contain multicomponent remanences of both normal and reversed polarities that were acquired over sharply defined blocking temperature intervals, providing evidence for localized reheating of some intervals during both normal and reversed polarity periods. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier rocks recovered at Site U1309D. The overall magnetic inclination of Hole U1309D is -35°, implying significant (up to ~ 50° counterclockwise, viewed to the north) rotation of the footwall around a horizontal axis parallel to the rift axis (010°) may have occurred. The tectonic rotations inferred by the paleomagnetic data suggest that the original fault orientation dipped relative steeply toward the spreading axis and subsequently rotated to a shallower angle. Coupled with the newly published U–Pb zircon ages for Hole U1309D rocks [Grimes, C.B., John, B.E., Wooden, J.L., 2008. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole 1309D, (30°N, MAR). Geochem. Geophys. Geosyst. 9, Q08012. doi:1029/2008GC002063], the new paleomagnetic data provide temporal and thermal constraints on the accretion history of the Atlantis Massif.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,