Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4697007 | Ore Geology Reviews | 2015 | 15 Pages |
•Seismic activity triggered fluid migration during extensional Alpine tectonics.•Sulphides, sulphosalts and quartz show oscillatory zoning.•Metals were leached from sediments and concealed Variscan deposits.•Mixing of different fluids at low temperature was the main cause of ore deposition.
The Pb–Zn–Ag quartz vein from Terramonte cuts the Neoproterozoic–Cambrian schist–greywacke complex. This orebody was partially exploited. The paragenetic sequence consists of four stages containing quartz accompanied mainly by arsenopyrite and pyrite in the first stage, sphalerite in the second stage, galena showing many inclusions of several sulphosalts in the third stage and carbonates in the fourth remobilization stage. Several sulphide and sulphosalt grains are oscillatory zoned. The chemical distinction between lighter and darker zones in backscattered images of arsenopyrite, pyrite, sphalerite and freibergite is due to substitutions in the mineral lattices. But the distinction between these zones in semseyite is due to a higher Pb content and a lower Sb content in the lighter zone than in the darker zone and the metal and metalloid are the main constituents in the solid solution, but are not correlated. The Sb, Ag and Bi substitute for Pb in galena, but did not cause any zoning. Ore deposition was possible due to mixing of a hypersaline fluid with up to 26 wt.% NaCl equivalent (and occasionally with CaCl2 up to 17 wt.%), which carried the metallic content of the fluid, with an extremely low salinity fluid of presumed meteoric origin that percolated down into the basement. The metals could have been leached from a mixture of mainly metasediments and also previous Sb–Au deposits by fluids that acquire high salinity in one of two probable ways: leaching of salt beds or following seawater evaporation. The entire mineralizing event probably occurred at a relatively low temperature, possibly between 120 and 230 °C. Remobilization of Pb, Zn, Ag, As, Sb and Cu will be due to the tectonic evolution of the opening of the Atlantic Ocean. This vein is probably of Alpine age.