Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4697361 | Ore Geology Reviews | 2014 | 23 Pages |
•A Late Cretaceous Mo–Cu–(W) belt lies in the southern Yidun Arc.•This belt is temporally associated with Late Cretaceous granitic intrusions.•The intrusions are adakitic rocks derived from thickened lower continental crust.•The belt was produced under a late- or post-collision extensional environment.•It was related to the collision between the Lhasa and Qiangtang terranes.
The Sanjiang Tethyan Metallogenic Domain (STMD) is an important part of the Tethyan giant metallogenic belt. The Yidun Arc is a part of the STMD in the eastern Tibetan Plateau. Recently, four newly discovered Mo–Cu–(W) ore deposits related to granitic intrusions were found distributed along the north-south strike in the southern Yidun Arc, which are identified as the Xiuwacu, Relin, Hongshan, and Tongchanggou deposits herein. These four deposits formed along high-angle north-northwest or north-west strike-slip faults, with vein-type and porphyry-type Mo–Cu mineralization developed in the intrusions. Molybdenite Re–Os and zircon U–Pb dating together with zircon Hf isotopes and whole-rock geochemistry of the intrusions were studied to discern the relationship between mineralization and magmatism, metallogenesis, and tectonic settings. Molybdenite from skarn-type mineralization at the Hongshan deposit has a Re–Os isochron age of 81.2 ± 2.6 Ma (MSWD = 1.3, n = 5) consistent with previously published zircon U–Pb ages and Re–Os ages of porphyry-type Mo mineralization. These results indicate that the Hongshan is a Late Cretaceous porphyry-skarn Cu–Mo deposit. Zircon U–Pb ages of the granitic intrusions in the Xiuwacu, Relin, and Tongchanggou deposits varying from ~ 87.4 Ma to ~ 82.7 Ma. Combined with published molybdenite Re–Os age spectrum (~ 85 Ma to ~ 81.2 Ma), it is proposed that the Mo–Cu–(W) mineralization in the Shangri-La region is spatially, temporally, and probably genetically related to the Late Cretaceous granitic intrusions. The Relin, Hongshan, and Tongchanggou intrusions have high SiO2 (65.2–70.0 wt.%), Sr (363–905 ppm), Sr/Y (22–72), and La/Yb (37–69) ratios, and low Y (11.6–17.0 ppm) and Yb (0.97–1.59 ppm), which displayed adakitic affinities. Their low MgO (0.66–1.44 wt.%), Mg# (25–46), variable negative zircon εHf(t) values (− 7.9 to − 2.3), and Proterozoic two-stages Hf model ages (TDM2 = 1.13–1.62 Ga) suggest that they were probably dominantly derived from partial melting of thickened lower continental crust. According to the tectonic evolution of the Bangong Meso-Tethys Ocean during the Late Mesozoic, the Late Cretaceous igneous event and mineralization in the Yidun Arc likely formed under a late- or post-collision extensional environment, probably related to the collision between the Lhasa and Qiangtang terranes during the Late Cretaceous.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide