Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4697405 | Ore Geology Reviews | 2013 | 16 Pages |
•Two mafic/ultramafic volcanic rock types, “MORB” and”CAB”, are identified.•The “CAB”-type, probably originated as a small Al- , Zr/Hf-depleted mantle plume.•Crustal contamination of the plume caused Al enrichment and Nb/Ti depletion.•Mantle plume rise caused felsic volcanism➔doming➔mafic/ultramafic volcanism.•Anorogenic metamorphism released VMS/gold mineralizing fluids and metals.
Most attention has been given to the geology of the extensive VMS and subordinate precious metals mineralization in the Skellefte district. Less attention has been given to indications of deep-seated origins of felsic and mafic/ultramafic volcanic rocks; of VMS and precious metals mineralizing fluids; and the primary origins of these metals. A holistic view of the significance of mafic/ultramafic volcanic rocks to both the geotectonic evolution of the area and the existence of its important base and precious metals deposits has never been presented. These subjects are discussed in this investigation.Primitive mantle normalized spider diagrams of rare-earth-elements (REE) distinguish two groups of mafic/ultramafic volcanic rocks, each with distinct geochemical characteristics: a mid-ocean-ridge “MORB”-type, and a geochemically unusual and problematic calc–alkaline–basalt “CAB”-type which is the main subject of this investigation. The “MORB”-type mafic volcanic rocks are mostly older than the Skellefte Group felsic volcanic rocks hosting the VMS deposits, whereas the more primitive “CAB”-type mafic/ultramafic volcanic rocks are mostly younger.A common source for these “CAB”-type, mafic-(MgO wt.% < 14%) and ultramafic-(MgO wt.% > 14%) volcanic rocks is suggested by their similar and distinctive geochemical features. These are near-chondritic (Al-undepleted) Al2O3/TiO2 ratios; moderate to strong high-field-strength-element (HFSE) depletion; light-rare-earth-element (LREE) enrichment and moderate heavy-rare-earth-element (HREE) depletion. They outcrop throughout an area of at least 100 × 100 km. Gold mineralization is spatially associated with ultramafic volcanic rocks.Zr and Hf depletion has been shown to be associated with Al-depletion in mafic/ultramafic volcanic rocks elsewhere, and has been attributed to deep-seated partial melting in ascending mantle plumes. Zr and Hf depletion in “CAB”-type Al-undepleted mafic/ultramafic volcanic rocks is therefore unusual. The solution to this dilemma is suggested to be contamination of an Al-depleted mantle plume by felsic crustal rocks whereby Al-depleted ultramafic magmas become Al-undepleted. It will be argued that this model has the potential to explain previous observations of deep-seated origins; the spatial association of ultramafic volcanic rocks with occurrences of gold mineralization; and even the primary origin of metals in VMS deposits.