Article ID Journal Published Year Pages File Type
4698205 Chemical Geology 2016 11 Pages PDF
Abstract

•Coupled relationship between the morphology and biologically important elements within Gaoyuzhuang microfossils is reported•Our data support sustained oxygen-producing photosynthesis in the Proterozoic Ocean•We demonstrate that cyanobacterial Calvin cycle-based photosynthesis might exist in Mesoproterozoic anoxic ocean.•Our results support the delayed oxygenation on the Earth.•Our study provides a new opportunity for deciphering the nature of ancient microorganisms in the Precambrian sediments.

Well-preserved microfossils in the stromatolitic cherts from the Gaoyuzhuang Formation (~ 1500 Ma), which have one of the best state of preservation in the Proterozoic Era, may play key roles in systematizing information about the evolution of early life in the Proterozoic Ocean. Here, a combination of light microscopy (LM), scanning electron microscopy (SEM), nano-scale secondary ion mass spectrometry (NanoSIMS), secondary ion mass spectrometry (SIMS) and geochemical techniques was employed to characterize the morphology, elemental distributions and carbon isotope values of individual Gaoyuzhuang microfossils, and their growing environment. Light microscopy analyses show that abundant filamentous and coccoid microfossils, classified as oscillatoriacean and chroococcacean cyanobacteria, respectively, are exceptionally well preserved in chert. NanoSIMS analyses show that metabolically important elements, such as 12C−, 13C−, 12C14N−, 32S−, and 34S−, are concentrated in these microfossils and that the variations in the concentrations of these elements are similar to each other, establishing the elemental patterns in undoubtedly biogenic microstructures. The carbon isotope (δ13C) values of individual microfossils range from − 31.7‰ ± 0.9‰ to − 23.1‰ ± 1.0‰ (weighted mean = − 28.5‰ ± 0.1‰), consistent not only with a Calvin Cycle-based photosynthesis, but typically for chroococcacean cyanobacteria as well. Our results, for the first time, provide the element distributions and cell specific carbon isotope values on convincing Mesoproterozoic cyanobacterial fossils, supporting sustained oxygen-producing photosynthesis in the Proterozoic Ocean. The geochemical data indicate these fossil microorganisms may grow in an anoxic seawater, potentially supporting the delayed oxygenation on the Earth. In this regard, this integrated approach may be a step towards a more comprehensive picture of the evolution of early life on the Earth.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,