Article ID Journal Published Year Pages File Type
4700086 Chemical Geology 2010 11 Pages PDF
Abstract

Here, the potential for rapid and accurate U–Th dating technique of marine aragonite skeletons (deep-sea corals, Lophelia pertusa) and secondary calcite deposits (speleothems and stalagmites) has been explored using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS). The analytical procedure includes a largely simplified chemical separation technique for uranium (U) and thorium (Th) using UTEVA resin. The developed technique permits simultaneous quantification of uranium [238U] and thorium [232Th] concentrations and their respective isotopic composition, required for U-series disequilibrium dating. Up to 50 U–Th dates per day can be achieved through ICP-QMS with δ234U and δ230Th reproducibility (2σ) of 3–4‰ and 1%, respectively. The high sensitivity (> 3.0 × 105 cps/ppb) together with low background (< 0.5 cps) on each mass between 228 and 236 amu allowed U–Th dating of ancient deep-water corals (15–260 kyr) and stalagmites (30–85 kyr) at precision levels of less than 2%. Consequently, the combination of simplified chemistry using UTEVA with state-of-the-art ICP-QMS isotopic measurements that do not require a U–Th separation step now provides an extremely rapid and low-cost U-series dating technology. The level of precision is most convenient for numerous geochronological applications, such as the determination of climatic influences on ecosystem development and carbonate precipitation. As a first-example application we present ICP-QMS U–Th dates of North Atlantic deep-water coral fragments retrieved in the southeastern Porcupine Seabight (MD01-2463G, Mound Thérèse), indicating a purely interglacial growth of deep-water corals on so-called carbonate mounds over several climate cycles.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,