Article ID Journal Published Year Pages File Type
4702166 Geochimica et Cosmochimica Acta 2014 10 Pages PDF
Abstract

The hydrogen isotope fractionation in alkenones produced by haptophyte algae is a promising new proxy for paleosalinity reconstructions. To constrain and further develop this proxy the coastal haptophyte Isochrysis galbana and the open ocean haptophyte alga Emiliania huxleyi were cultured at different salinities. The fractionation factor, αalkenones–water, ranged between 0.853 and 0.902 for I. galbana and 0.789 and 0.822 for E. huxleyi. The results show a strong linear correlation between the fractionation factor α and salinity for E. huxleyi, in agreement with earlier studies, but also for I. galbana. Both haptophytes show the same response to changes in salinity, represented by the slopes of the α–salinity relationship (∼0.002 per salinity unit). This suggests that the same process, in both coastal as well as open ocean haptophytes, is responsible for reducing fractionation with increasing salinity. However, there is a significant difference in absolute isotope fractionation between E. huxleyi and I. galbana, i.e. E. huxleyi produces alkenones which are 90‰ more depleted in D under the same culturing conditions than I. galbana. Our data suggest that the δD of alkenones can be used to reconstruct relative shifts in paleosalinity in coastal as well as open ocean environments with careful consideration of species composition and other complicating factors especially in coastal regions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,