Article ID Journal Published Year Pages File Type
4703877 Geochimica et Cosmochimica Acta 2009 14 Pages PDF
Abstract

Samples produced in piston cylinder experiments were used to document the thermal isotopic fractionation of all the major elements of basalt except for aluminum and the fractionation of iron isotopes by chemical diffusion between a natural basalt and rhyolite. The thermal isotopic fractionations are summarized in terms of a parameter Ωi defined as the fractionation in per mil per 100 °C per atomic mass units difference between the isotopes. For molten basalt we report ΩCa = 1.6, ΩFe = 1.1, ΩSi = 0.6, ΩO = 1.5. In an earlier paper we reported ΩMg = 3.6. These fractionations represent a steady state balance between thermal diffusion and chemical diffusion with the mass dependence of the thermal diffusion coefficient being significantly larger than the mass dependence of the chemical diffusion coefficients for isotopes of the same element. The iron isotopic measurements of the basalt–rhyolite diffusion couple showed significant fractionation that are parameterized in terms of a parameter βFe = 0.03 when the ratio of the diffusion coefficients D54 and D56 of 54Fe and 56Fe is expressed in terms of the atomic mass as D54/D56 = (56/54)βFe(56/54)βFe. This value of βFe is smaller than what we had measured earlier for lithium, magnesium and calcium (i.e., βLi = 0.215, βCa = 0.05, βMg = 0.05) but still significant when one takes into account the high precision with which iron isotopic compositions can be measured (i.e., ±0.03‰) and that iron isotope fractionations at magmatic temperatures from other causes are extremely small. In a closing section we discuss technological and geological applications of isotopic fractionations driven by either or both chemical and thermal gradients.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , ,