Article ID Journal Published Year Pages File Type
4704162 Geochimica et Cosmochimica Acta 2008 12 Pages PDF
Abstract

Sorption and desorption processes are an important part of biological and geochemical metallic isotope cycles. Here, we address the dynamic aspects of metallic isotopic fractionation in a theoretical and experimental study of Fe sorption and desorption during the transport of aqueous Fe(III) through a quartz-sand matrix. Transport equations describing the behavior of sorbing isotopic species in a water saturated homogeneous porous medium are presented; isotopic fractionation of the system (Δsorbedmetal-soln) being defined in terms of two parameters: (i) an equilibrium fractionation factor, αe; and (ii) a kinetic sorption factor, α1. These equations are applied in a numerical model that simulates the sorption-desorption of Fe isotopes during injection of a Fe(III) solution pulse into a quartz matrix at pH 0–2 and explores the effects of the kinetic and equilibrium parameters on the Fe-isotope evolution of porewater. The kinetic transport theory is applied to a series of experiments in which pulses of Na and Fe(III) chloride solutions were injected into a porous sand grain column. Fractionation factors of αe = 1.0003 ± 0.0001 and α1 = 0.9997 ± 0.0004 yielded the best fit between the transport model and the Fe concentration and δ56Fe data. The equilibrium fractionation (Δ56FesorbedFe-soln) of 0.3‰ is comparable with values deduced for adsorption of metallic cations on iron and manganese oxide surfaces and suggests that sandstone aquifers will fractionate metallic isotopes during sorption-desorption reactions. The ability of the equilibrium fractionation factor to describe a natural system, however, depends on the proximity to equilibrium, which is determined by the relative time scales of mass transfer and chemical reaction; low fluid transport rates should produce a system that is less dependent on kinetic effects. The results of this study are applicable to Fe-isotope fractionation in clastic sediments formed in highly acidic conditions; such conditions may have existed on Mars where acidic oxidizing ground and surface waters may have been responsible for clastic sedimentation and metallic element transport.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,