Article ID Journal Published Year Pages File Type
4704207 Geochimica et Cosmochimica Acta 2010 10 Pages PDF
Abstract

The enthalpy of formation from the elements of a well-characterized synthetic Pb-jarosite sample corresponding to the chemical formula (H3O)0.74Pb0.13Fe2.92(SO4)2(OH)5.76(H2O)0.24 was measured by high temperature oxide melt solution calorimetry. This value (ΔH∘f = −3695.9 ± 9.7 kJ/mol) is the first direct measurement of the heat of formation for a lead-containing jarosite. Comparison to the thermochemical properties of hydronium jarosite and plumbojarosite end-members strongly suggests the existence of a negative enthalpy of mixing possibly related to the nonrandom distribution of Pb2+ ions within the jarosite structure. Based on these considerations, the following thermodynamic data are proposed as the recommended values for the enthalpy of formation from the elements of the ideal stoichiometric plumbojarosite Pb0.5Fe3(SO4)2(OH)6: ΔG∘f = −3118.1 ± 4.6 kJ/mol, ΔH∘f = −3603.6 ± 4.6 kJ/mol and S° = 376.6 ± 4.5 J/(mol K). These data should prove helpful for the calculation of phase diagrams of the Pb–Fe–SO4–H2O system and for estimating the solubility product of pure plumbojarosite. For illustration, the evolution of the estimated solubility product of ideal plumbojarosite as a function of temperature in the range 5–45 °C was computed (Log(Ksp) ranging from −24.3 to −26.2). An Eh–pH diagram is also presented.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , ,