Article ID Journal Published Year Pages File Type
4704674 Geochimica et Cosmochimica Acta 2009 16 Pages PDF
Abstract

Naturally weathered olivine occurring as phenocrysts in Hawai’ian volcanic rocks from several volcanic centers and regolith/outcrop settings, and as tectonized olivines from several metadunite bodies in the southern Appalachian Blue Ridge, are all similarly corroded by natural weathering. Conical (funnel-shaped) etch pits occur as individual pits, base-to-base pairs of cone-shaped pits, or en echelon arrays. Etch-pit shapes and orientations in the smallest etch-pit arrays visible in conventional scanning electron microscopy resemble even smaller features previously reported from transmission electron microscope investigations of olivine weathering. Etch pits occur in samples with chemical and/or mineralogical evidence of weathering, and/or are associated with, or proximal or directly connected to, fractures or exposed outcrop surface, and therefore are formed by weathering and not inherited from pre-weathering aqueous alteration (e.g., serpentinization, iddingsitization) of these parent rocks. Many etch pits are devoid of weathering products. Natural weathering of olivine is surface-reaction-limited. Similarity of corrosion forms from naturally weathered olivine from multiple igneous and metamorphic parent-rock bodies suggests that olivine weathers in the same manner regardless of its specific crystallization/recrystallization history, eruption/weathering/exposure ages of the olivine’s host rock, and the local regolith history.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,