Article ID Journal Published Year Pages File Type
4704686 Geochimica et Cosmochimica Acta 2009 15 Pages PDF
Abstract

Ultramafic rocks of the Duke Island Complex in southeastern Alaska crystallized in a supra-subduction zone setting, but the serpentinization of olivine-bearing rocks involved the incursion of late-stage meteoric waters. Three textural types of serpentine (primarily lizardite) have been identified which in part reflect progress in reactions during multiple stages of fluid infiltration. The overall mesh texture of serpentine has been subdivided into a massive-type, found in dunites and wehrlites, and a dendritic-type found in wehrlites and olivine clinopyroxenites. Serpentine veins represent a late-stage in the hydrothermal alteration process. Both FeO contents and δ18O values of the three textural types of serpentine are variable at the centimeter scale. Magnetite abundance in association with serpentine is also variable with up to 5 vol% of magnetite found in samples with dendritic serpentine. Continued reaction of FeO-bearing serpentine with fluid appears to control the formation of most magnetite. Oxygen isotope ratios of the three textural types of serpentine are distinct, with the massive variety characterized by δ18O values between −3‰ and 3‰, the dendritic variety showing values between 2‰ and 6‰ and the veins having the highest values between 4‰ and 10‰. Although the δ18O values may vary by as much as 5‰ on the centimeter scale, δD values tend to show relatively less variation with over 90% of the measured values between −100‰ and −120‰. The O and H isotopic values are consistent with the involvement of meteoric water that had undergone variable degrees of isotopic exchange with country rocks prior to reacting with olivine in the Duke Island Complex. Small-scale variability in both serpentine FeO content and δ18O values suggests that chemical and isotopic equilibria may have not been attained at larger than centimeter scales. Oxygen isotopic variability in serpentine produced during relatively low-temperature hydrothermal alteration is in large part a function of exchange mediated via fluid flow through microfractures.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , ,