Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4705089 | Geochimica et Cosmochimica Acta | 2008 | 11 Pages |
The current study provides an investigation of abiotic reduction of an oversaturated uranyl solution driven by iron nanoparticle oxidation. The reactivity of nano-scale zero-valent iron (ZVI) under mildly oxic conditions (1.2% O2 and 0.0017% CO2) was studied in 1000 ppm uranyl solution in the pH range 3–7, at reaction times from 10 min to 4 h. Reductive precipitation of UO2 was observed as the main process responsible for the removal of uranium from solution with the kinetics of reaction becoming increasingly favourable at higher pH. Despite working with an oversaturated uranium solution, the precipitation of UO2 occurred in preference to precipitation of UO3·2H2O (metaschoepite) at reaction times between 1 and 4 h and for uranyl solutions initially set up at pH ⩾5. Characterisation of both solid and solution phases was performed using X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) imaging, X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).