Article ID Journal Published Year Pages File Type
4705772 Geochimica et Cosmochimica Acta 2007 10 Pages PDF
Abstract

We demonstrate that Shewanella oneidensis, a metal-reducing bacteria species with cytoplasmic-membrane-bound reductases and remarkably diverse respiratory capabilities, reduced Cr(VI) to Cr(II) in anaerobic cultures where chromate was the sole terminal electron acceptor. Individual cell microanalysis by transmission electron microscopy (TEM) using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) demonstrates Cr(II) concentrated near the cytoplasmic membrane, suggesting the terminal reduction pathway is intracellularly localized. Further, estimated cellular Cr(II) concentrations are relatively high at upwards of 0.03–0.09 g Cr/g bacterium. Accumulation of Cr(II) is observed in S. oneidensis cells prior to the formation of submicron-sized precipitates of insoluble Cr(III) on their surfaces. Furthermore, under anaerobic conditions, Cr(III) precipitates that encrust cells are shown to contain Cr(II) that is likely bound in the net negatively charged extracellular biopolymers which can permeate the surfaces of the precipitates. In otherwise nearly identical incubations, Cr(III) precipitate formation was observed in cultures maintained anaerobic with bubbled nitrogen but not in three replicate cultures in an anaerobic chamber.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , ,