Article ID Journal Published Year Pages File Type
4705773 Geochimica et Cosmochimica Acta 2007 14 Pages PDF
Abstract

The structure and reactivity of the dolomite (104)–water interface was probed in situ with high resolution X-ray reflectivity and surface force microscopy at room temperature. Measurements in stoichiometric solutions alternating between saturated and supersaturated (log IAP/K = 2.3) conditions show that the dolomite surface termination readily changes in response to solution composition, but these changes are self-limiting and partially irreversible. The freshly cleaved dolomite (104) surface in contact with the saturated solution has a stoichiometric termination, a distinct surface hydration layer and small surface structural displacements, similar to those observed previously at the calcite–water interface. After reaction with supersaturated solutions dolomite is terminated by a two-layer thick Ca-rich film with substantial structural displacements of the cations. With subsequent exposure to a saturated solution this surface was transformed to an interfacial structure different from the freshly cleaved surface, having a reduced density of the outermost surface layer and a Ca-rich second layer. These results provide new insight into the lack of dolomite growth in modern carbonate environments (i.e., the “dolomite problem”), suggesting that this behavior is associated with a combination of thermodynamic and kinetic factors, including (1) growth of compositionally modified epitaxial CaXMg2−X(CO3)2 layers having thicknesses limited by lattice strain, (2) slow incorporation of Mg during layer growth, and (3) partial irreversibility of surface reactions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,