Article ID Journal Published Year Pages File Type
4705891 Geochimica et Cosmochimica Acta 2008 17 Pages PDF
Abstract

The two most abundant network-modifying cations in magmatic liquids are Ca2+ and Mg2+. To evaluate the influence of melt structure on exchange of Ca2+ and Mg2+ with other geochemically important divalent cations (m-cations) between coexisting minerals and melts, high-temperature (1470–1650 °C), ambient-pressure (0.1 MPa) forsterite/melt partitioning experiments were carried out in the system Mg2SiO4–CaMgSi2O6–SiO2 with ⩽1 wt% m-cations (Mn2+, Co2+, and Ni2+) substituting for Ca2+ and Mg2+. The bulk melt NBO/Si-range (NBO/Si: nonbridging oxygen per silicon) of melt in equilibrium with forsterite was between 1.89 and 2.74. In this NBO/Si-range, the NBO/Si(Ca) (fraction of nonbridging oxygens, NBO, that form bonds with Ca2+, Ca2+–NBO) is linearly related to NBO/Si, whereas fraction of Mg2+–NBO bonds is essentially independent of NBO/Si. For individual m-cations, rate of change of KD(m−Mg) with NBO/Si(Ca) for the exchange equilibrium, mmelt + Mgolivine ⇌ molivine + Mgmelt, is linear. KD(m−Mg) decreases as an exponential function of increasing ionic potential, Z/r2 (Z: formal electrical charge, r: ionic radius—here calculated with oxygen in sixfold coordination around the divalent cations) of the m-cation. The enthalpy change of the exchange equilibrium, ΔH, decreases linearly with increasing Z/r2 [ΔH = 261(9)–81(3)·Z/r2 (Å−2)]. From existing information on (Ca,Mg)O–SiO2 melt structure at ambient pressure, these relationships are understood by considering the exchange of divalent cations that form bonds with nonbridging oxygen in individual Qn-species in the melts. The negative ∂KD(m−Mg)/∂(Z/r2) and ∂(ΔH)/∂(Z/r2) is because increasing Z/r2 is because the cations forming bonds with nonbridging oxygen in increasingly depolymerized Qn-species where steric hindrance is decreasingly important. In other words, principles of ionic size/site mismatch commonly observed for trace and minor elements in crystals, also govern their solubility behavior in silicate melts.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
,