Article ID Journal Published Year Pages File Type
4712553 International Journal of Sediment Research 2013 10 Pages PDF
Abstract

A simple turbidity model was developed with a sound physical basis based on in situ high-frequency observations of short-term, strong wind-induced sediment suspension in Taihu Lake, China. The validation results show that the model could successfully simulate turbidity caused by strong wind events, despite the relatively poor simulation accuracy for high values of turbidity caused by the entrainment of cyanobacteria by turbulence. The in situ observations and model simulation results indicate that the wind waves were within a narrow spectral band, with spectral energy mainly distributed within the 0.28–0.75 Hz band on opposite sides of the peak frequency. These high-frequency and low-energy wind waves are sensitive to depth filtering. However, the average depth of the lake is only 1.9 m, and wind waves still represent the main force of sediment suspension at the sediment-water interface. Moreover, lake currents were of significance to the maintenance of background turbidity in calm waves or ripples and in the determination of critical shear stress. By considering the spatial distribution of hydrodynamics and sediment, the model can be used to simulate the turbidity of the entire lake as well as boundary conditions for three-dimensional numerical models.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology